
Abstract

THE DESKTOP INTERFACE IN INTELLIGENT TUTORING SYSTEMS

Stephen Baudendistel Grace Hua

COMPUTER SCIENCES CORPORATION
Applied Technology Division

1651 1 Space Center Blvd.
Houston, TX 77058

(713) 280-2430

The interface between an Intelligent Tutoring System
(ITS) and the person being tutored is critical to the
success of the learning process. If the interface to the
ITS is confusing or non-supportive of the tutored
domain, the effectiveness of the instruction will be
diminished or lost entirely. Consequently, the interface
to an ITS should be highly integrated with the domain
to provide a robust and semantically rich learning
environment. In building an ITS for ZetaLISP on a
LISP Machine, a Desktop Interface was designed to
support a programming learning environment. Using
the bitmapped display, windows, and mouse, three
desktops were designed to support self-study and
tutoring of ZetaLISP. Through organization,
well-defined boundaries, and domain support facilities,
the desktops provide substantial flexibility and power
for the student and facilitate learning ZetaLISP
programming while screening the student from the
complex LISP Machine environment. The student can
concentrate on learning ZetaLISP programming and not
on how to operate the interface or a LISP Machine.

Introduction

Artificial Intelligence techniques are now beginning to
be applied to the area of education, in particular to the
development of Intelligent Computer Assisted
Instruction (ICAI). Frequently, the ICAI is in the form
of Intelligent Tutoring Systems. Figure 1 depicts a
typical ICAI architecture [9]. The area of the ITS most
frequently addressed to date has been the student
model. By contrast, the interface has been minimally
addressed. Yet the interface is the student's contact
with every component of the tutor. If the student
cannot get past the interface, the quality of the student
model or of any other component of the ITS will not

matter. Consequently, the interface must be a high
priority in the development of any ICAI [17].

r"l IllTERFRCE
I I

STUDEnT TEACHlnG
KnOWLEDG

Figure 1. A typical Intelligent Computer Assisted
Instruction (ICAI) Architecture.

This paper will describe the implementation of an ICAI
interface, referred to as the Desktop Interface, for a
ZetaLISP Intelligent Tutoring Assistant (ZITA). To date
the ZITA student model has been only minimally
implemented, while the emphasis has been on
developing an interface which would support and
encourage learning to program in ZetaLISP on a LISP
Machine. In fact, the Desktop Interface is intended to
provide much more than a typical user interface: it is
to provide a Programming Learning Environment (PLE)
[191. Moreover, the Desktop Interface is presented as
an authoring vehicle for developing programming
language tutors for languages in addition to ZetaLISP.

135

In promoting the ITS interface, we are not advocating a
position of ignoring components of ICAI other than the
interface or of producing a glittering interface with no
underlying substance. Ideally, all the components
would be highly integrated. However, up to this point,
more attention has been devoted to the more
glamorous components: the Student Model and the
Domain Knowledge. We do not want the gains made in
these latter components diminished or lost because the
learning environment does not foster and facilitate
learning. Unpleasant experiences with frustrating,
difficult interfaces will not advance ICAI, but rather
retard it. Our ideal tutoring environment is one which
seems invisible to the student but which supports the
intuitive operational expectations of the student
relative to the domain being tutored.

Background

I In the past five years important advances in graphical
presentation capability have made possible a new,
powerful method of communication. Bitmapped,
graphical windows and the mouse have resulted in
proven techniques for reliable, high-bandwidth
information exchange between people and computers
[21] which more closely model human cognitive
processes, especially with the use of metaphor and
frames [5]. With these capabilities we can move far
beyond the limitations imposed by static CRT screens
with 25 lines of 80 characters. Previously such
capabilities have required expensive, multi-MIPS
computers. But the decreasing cost and increasing
power of microcomputers now make such capabilities
readily available for ICAI. Indeed, we should demand
windows and mice, and refuse to consider systems
limited to complicated keystroke patterns and
displaying a few lines of text.

Criteria for Developing Tutoring Environments

While the tutoring environment must be designed with
the specific domain in mind, some general criteria for
developing tutoring environments have begun to
emerge [24]. Environments should be intuitive,
obvious and fun. The use of metaphor, icons, and the
mouse should take advantage of student intelligence,
experience and resourcefulness. Environments should
provide high-bandwidth communication between the
student and the tutor. Designers should be motivated
by teaching and cognitive knowledge about how
experts perform tasks in the subject domain.
Environments should isolate key tools for attaining
expertise in the domain. Environments should

maintain fidelity with the real world (in learning
programming, the student should be able to run both
examples and problem solutions). Environments
should be responsive, permissive, and consistent based
on skills students already have rather than forcing
them to learn new skills. Finally, all tools should be
based on similar interface devices such as menus,
mouse clicks, etc.

A ZetaLISP Tutor

We currently have a task with the Artificial
Intelligence Section of the Mission Planning and
Analysis Division (MPAD) of NASA's Johnson Space
Center (JSC) to provide training in AI topics (Common
LISP, ZetaLISP, LISP Machines, CLIPS, ART). The
ZetaLISP tutor has been developed on an
as-time-permits basis to complement our ZetaLISP
class. In designing the ZetaLISP tutor, two goals were
established, First, we wanted an effective environment
for tutoring ZetaLISP on a LISP Machine. Secondly, we
wanted to develop a general programming learning
environment for computer applications languages. In
particular, we wanted a PLE which could be duplicated
on workstations and the upcoming, more powerful
personal computers.

One must make a number of assumptions when
implementing a tutor. Ours were as follows: the
student would be a technical professional employed by
NASA or its contractors; the student would have the
equivalent of 40 hours of Common LISP training and 8
hours of hands-on training in the use of a LISP
Machine; the tutor would supplement our classroom
ZetaLISP training; the tutor could evolve to be used by
persons who had completed the ZetaLISP training
(about 45 hours) and were interested in obtaining
more experience or were seeking examples to help in
their current tasks.

The coaching system of ZITA evaluates the student's
performance through a differential modeling
technique, comparing the student's progress to an ideal
solution step-by-step, intervening immediately when it
perceives the student has made a mistake [4], [IS]. At
this stage of development, the immediate intervention
issued by the tutor primarily points out syntactic
errors and noise level errors made by the student
presumably due to negligence and fatigue. Based on
the previous assumption of the student's background,
these errors are not considered to have resulted from
misconceptions in learning.

136

Learning to Program and the PLE

How could an appropriately structured environment
facilitate the acquisition of programming skills [16]?
In order to answer this question, we first investigated
some of the aspects of learning to program. Three
aspects of learning to program were to be supported
by.our PLE [l]. First, the PLE was to help the student
organize and compile problem-solving operators for
programming. Learning to program involves
recognizing appropriate goals and decomposing the
goals into subgoals until goals are reached which
correspond to code. Secondly, the PLE was to represent
the relevant knowledge, both declarative and
procedural, in ways which correspond to the cognitive
representations of programmers, because one's
representation of a problem has strong impact on one's
problem-solving ability. Thirdly, the PLE was to act as
an external memory device for programmers to reduce
the impact of human memory limitations.
Approximately 50 percent of LISP novices' time is
spent recovering from errors of memory [11. By
reducing student working memory load, the PLE will
minimize student errors due to memory limitations.

Good programmers are made, not born [23]. B.S. Bloom
found that 98 percent of the students with private
tutors performed better than the average classroom
student. He also found that the greatest learning gains
were for the poorest students [2]. The average college
graduate is not prepared to perform professional
programming tasks without additional training when
he or she first arrives on the job in industry. Large
sums of money are spent training and retraining
programmers with widely varying results. We can
improve this process greatly by developing intelligent
tutors for learning programming which will provide
consistent, cognitively modeled [121 tutoring when and
where needed, and at significant cost savings.

The PLE of our ZetaLISP tutor addresses the three
aspects of learning programming described above in
four ways:

a) Learning by example 1201, [lo], [41;
b) Facilitating knowledge representation;
c) Reducing student working memory requirements;
d) Unleashing the power of the computer on the ICAI
interface.

The PLE is based on learning by example. Examples
are critical to learning and to the structure of
knowledge and memory. Learning by example

provides the student with early, positive experiences
and lays down a solid foundation on which to build.
Examples help the student organize and compile the
use of appropriate operators for programming.
Examples illustrate goals and subgoals appropriate to a
particular language but which may not transfer to or
from other languages. Techniques recalled from
examples help reduce the number of steps to produce a
solution in similar problems. Novices use examples to
generalize solutions, set limits to those generalizations,
make recipes for standard tasks, and as a basis for
remeval and modification approach to generating
other examples.

Adult students only acquire effective use of
problem-solving knowledge by practicing with a series
of examples and problems [19]. Adults prefer learning
by doing rather than watching because it makes the
subject immediately useful and meaningful 1221.
Studies by the Xerox Corporation confirm that learning
occurs 50 percent faster with active, hands-on training
than when the learning is passive [131. Adult learners
seek a focused, applicable treatment of the subject so
they can transfer the concept to their work.
Generalities are acceptable only when they lead to
specific information and ideas. Adults are highly
motivated to apply their learning to their work and are
willing to assume responsibility for learning. Adult
learning uses experience as a resource. Adults feel
rewarded when the learning enriches their experience.
Material that provides options is more appealing to
adults than material that locks in one approach.
Examples reinforce and strengthen the link between
the concept and application transfer, rewarding the
learning experience and disposing the student toward
further knowledge.

The PLE facilitates programming knowledge
representation as used by the expert. Not only is
syntactic knowledge represented, but more
importantly, much implicit semantic knowledge,
acquired over many years of experience, is presented
to the student. Techniques illustrating when, what,
and how to extend specific knowledge in the examples
to solve new problems (extrapolate) [151 must be
taught. Human learning occurs as a search in a
problem space [I21 and the desktop interface of the
PLE helps constrain and focus the search. Each
learning state and operators are well defined for each
desktop in the PLE. Chunking is well suited to learning
because it is a recorder of goal-based experience; it
caches the processing of a subgoal in such a way that a
chunk can substitute for the normal, possibly complex,

137

processing of the subgoal the next time the same or a
similar subgoal is generated [ll]. Each exercise is a
chunking process of storing both knowledge and links
to appropriate, related knowledge.

Memory load is minimized by the PLE. Each desktop of
the PLE organizes information by chunking into easily
recognized areas, minimizing student memory
requirements. Each desktop is self-contained; the
information necessary to perform required actions on
the desktop is present in a window. Transitions from
one desktop to another are accomplished with a simple
mouse click on a clearly marked box. By using dkect
manipulation techniques with the mouse and menus,
options are clearly delineated and selected in obvious,
foolproof ways. Examples and problems help clearly
separate details from general principles and establish
limitations when extending operators. Finally, each
student can use as much or as little of the instructions
and explanations as desired, thus both avoiding
information overload and frustration from too little
information.

Students fail to learn from ICAI only when there are
negative forces set up against learning [23] such as
unfriendly, difficult interfaces. By unleashing the
power of the computer in creating a seemingly
invisible desktop tutorial interface, we provide an ideal
programming learning environment. The format of the
PLE defines boundaries unobtrusively while leaving
the horizons of the domain open for the student to
acquire the desired knowledge. Bitmapped windows,
the mouse, and high-powered (MIPS, memory,
windowing operating systems), low-cost,
microprocessor-based computers have made possible
high-bandwidth, self-evident ICAI interfaces.

The Desktop Interface Implementation of the
PLE

The Desktop Interface implemented for the ZetaLISP
PLE resembles a desk with relevant documents spread
out neatly on it; because there are several discrete
stages in the PLE, there is a separate desktop for each
stage. Each desktop is divided into four or five parts
(windows) with each part representing one document;
if a document cannot be seen completely in its window,
the window scrolls (using the mouse) to permit unseen
sections to be read. People can deal with from four to
seven chunks of data at one time [8]. The division of
the desktop into less than seven chunks is designed to
fit this cognitive model and thereby to limit the
student working memory load. Desktops and windows

are consistent in format and function. Each desktop
must be self-contained so that the student can
concentrate on learning the desired knowledge of the
domain and not on operating the interface or searching
books for additional information. All options are
selected with the mouse. Code for examples and
problem solutions can be executed by clicking the
mouse on an appropriate menu item. The student can
hardcopy the window contents for easier reading,
making notes, or for future reference [23].

Four desktops comprise the Desktop Interface for this
PLE. The first three have been implemented; the
fourth has not been designed. The first desktop is the
Selections Desktop (Figure 2). In the Selections
Desktop the student selects, with the tutor's assistance
(based on past performance), the topic of study by
selecting an example topic with the mouse. This
desktop also contains a LISP listener where the student
can enter and execute LISP code if desired for any
reason. When an example topic is agreed on between
the tutor and the student, the student is taken to the
second desktop, the Study Desktop (Figure 3).

In the Study Desktop, the student is presented with
instructions for the desktop, the code for the selected
example topic, explanations for the topic, and a LISP
listener. Because so much information about
programming is conveyed only by executing programs,
the student can execute the code for the example being
studied by selecting a box with the mouse at the
bottom of the LISP listener (Figure 4). When the
student has finished studying the example, he or she
can work problems posed by the tutor which are
variations of the code of the example studied by
selecting a box with the mouse at the bottom of the
LISP listener. In this case, the student is taken to the
third desktop, the Tutorial Desktop. As before, there
are instructions for this desktop and the code of the
example from the Study Desktop.

In the Tutorial Desktop, the student clicks the mouse
on the menu item "Show Variation Choices" and is then
presented with a list of available problems. Once the
student selects a problem to work, the code of the
problem, which is a variation of the example studied, is
loaded in a window (code which the student is to
supply is missing, from a few lines to whole functions).
Guidelines for working the problems appear in reverse
video and a reverse video window appears over the
example code window for the student to enter the
missing code according to the guidelines (Figure 5) .
The student enters ZetaLISP code and the tutor

138

m B B I . . * ; '

I Avallablc Exsmnle Seleetlons
_ _ _) .._ m~ nn I unw '=== Basic F l a v o r s 6 Methods nonentarv Pop-up Menu . ._ .. _ _ - . .

Choose M u l t i p l e F i x e d Ualucs Uindou Re tu rn t o Study Uindous I Choose M u l t i p l e V a r i a b l e Uslucs Uindou

Figure 2. The Selections Desktop of the Desktop Interface.

Stady Explanations Wlndow Study Code Window
H n R n c w o TOP u BOTTOM u [HARDCOPY 0 TOP u BOTTOM U

Figure 3. The Study Desktop of the Desktop Interface.

139

 the Instructions YlndW (thls uindou).
5. To RETURN to the example Selections, cllck the nouse on the
lndlcated box to the riaht in the Llstener uindou.

6. To IWOUT variations o f this exenple, sllck the nouse on the
indicated b o l to the right in the Listener uindou.

7. To RUN the exanole YOU selected, click the nouse on the
indlsated bor to the right i n the Listener uindou.

Uhen a selection i s nede. a value assigned to that selection 4s
returned as the side effect. If the nouse 1s n w e d outside the
uindou ulthout naklng a selection, M I L i s returned as the side
effect.

2. The code fw this example appear. in the Code Uindou at the
lower right. There are many DWnutatlOnS OF thls uindou; border8
SM be nadc less or nore bold. nore itens can be added. the lebe
can be changed, the text Can be presented in different fonts and
so Forth. Notlsc thet nothing In the code defines the s i z e oF
the window or &re it i s to appear. The default .Ire i s thet
uhlch i s large enouph to hold the Iten list and title, slvcn the
specifled font .lies, the runbar and length o f menu (tens; the
deFevlt position Of .ppcu.nce 1s at the nouse CUTSOP position.
Notice a l s o that the uindou Contents belou the popup n e w i s
DrcSerud , IC , when thc popup ulndou disappears, the contents OF
the window bclou renain intact.

3. RCCCr to Pages 213-228 Or Volune 7, Progranning the User
Interface for Further detslls.
N I L

Sttidy Explanalions Window Study Code Wlndoru
HRPDCOPY LI TOP u BOTTOtl u 1 HARDCOPY 0 TOP u BOTTOM U

Figure 4. Student executing code for the example being studied on the Study
Desktop.

attempts to diagnose bugs and offer corrective
dialogue. When the student successfully completes the
problem, the tutor inserts the code into the variation
code window and the student can execute the problem
solution (Figure 6) by clicking the mouse on the menu
item "Run Variation with User Code". The student may
then select another problem on the current topic or
return to the Selections Desktop to choose another
topic.

The fourth desktop, the Planning and Goals Help
Desktop, has not been implemented yet. Because
successful programming requires knowledge of how to
both recognize recurring operations and make goals
and plans to perform those operations, unsuccessful
programmers will exhibit a lack of such abilities.
Consequently, the tutor will have to help not only with
syntax but also with establishing programming goals
and plans. Overcoming this inability is critical if the
student is to learn programming [181, [141, [61,[71.
Thus, when the student demonstrates an inability to
form correct programming goals and plans, he or she
will be transferred to this desktop and will be assisted
by the tutor in devising successful goals and plans for

the selected problem before being returned to the
Tutorial Desktop. Once back in the Tutorial Desktop,
the tutor will assist the student in writing code based
on the goals and plans developed in the Planning and
Goals Help Desktop.

Expectations for an ICAI PLE

We expect the PLE to satisfy a number of sound
cognitive principles. The actual layout of the PLE is not
important so long as the underlying structure makes
the semantics of the domain evident, that is, makes it
easy to carry out actions in the domain, and to see and
understand the results and implications of those
actions. It must support students as they acquire an
understanding of the complex semantic domain of
programming, minimizing the gap between
expectations and actions supported. Certainly it is
specialized, highly integrated with the domain and
semantically rich with high-bandwidth information
transfer between interface and student. It avoids
low-bandwidth, semantically weak interfaces which
greatly complicate the diagnosis problem. By offering
a good match to goals and plans of the student as they

140

Connand :
Reset t ins R R T . . .
Knouledae base has been r e a c t .
110 eppl1cable ruler.

No applisablc rules.

No applicable rules.

Tulorlal LISP Llstener

Figure 5. Student entering code to solve the problem posed by the ZetaLISP tutor on
the Tutorial Desktop.

I;; -.- Mods: LISP; Bare: 10.; Package: COMMON-LISP-USER - * - li:; -*- Modi: LISP; Base: 10,; Package: COMMON-USF-USER -'- ..
(dervar .SOIOr-m.nU-...mpl.-I .. nil) I ... (aswar -coior-menu-exampie* nil)

(defnavor C O I O ~ - C ~ O I C O 0
(1v:nom.nfary-m.nu)
(:dehUIf -inif-pllsf

; bold thkk borders

; Iarp. beid SharaC1.n

..

:borders 6

:lonf-map '(fontl:bigmf fonfl:nl12i)
:label '(:fop :string 'S.i.cf Color of IISU.. :(on[fontl:hlf2l)

:ifem-U~i s(-slu.' -Rea- *Y.IIOW- 'Orem' 'orange')))
; choices in menu

(refp 'COlOr-mPnU-.xamp1.* (tv:m&k.-windOw 'color-choice))

(rem" mom.ntarypopup ()
; the : c h o ~ m m.rrage below a~tu.IIy c a ~ s e i th. manu I o pop-up

..

T u l o r l a l Varlatlonr Wlndow T u t o r l r l Example Window
tIARDCOPV IJ TOP u BOTTOM U 1 HARDCOPY U TOP IJ BOTTOM 0

Figure 6. Student executing code for their solution to the problem posed by the
ZetaLISP tutor.

141

learn to program, it accommodates stages of student
conceptualization of the domain and how movement
from one stage to another takes place. It reflects the
task of learning programming, the information that
must be presented, and ways in which students may
interact with the information, that is, how good
programmers organize knowledge and use operators.
Serving as an external memory system, the PLE uses
the desktop metaphor to organize, standardize, define
boundaries, reduce memory requirements, obviate
actionslresults, and convey a feeling of control.

Conclusions

We now need, and will continue to need, many
well-trained programmers. The current method of
training programmers is expensive, haphazard, and not
founded on an understanding of how to learn
programming. Over the past five years we have
obtained much knowledge of how to learn
programming and, at the same time, computers and
software have advanced dramatically in capability
while their cost has declined substantially. At this
point we have the knowledge and tools available to
develop an ICAI Programming Learning Environment
and deliver uniform, semantically rich, and cognitively
based tutors to train the necessary programmers. The
Desktop Interface is a candidate authoring vehicle for
such an ICAI PLE. We are continuing, as time permits,
to develop and test the Desktop Interface and the
Student Model in the ZetaLISP tutor.

References

1. Anderson, J., "Learning to Program," Proceedings
Eighth International Joint Conference on Arti3cial
Intelligence, Karlsruhe, West Germany, August 8-12,
1983, pp. 57-62.

2. Anderson, J., Boyle, F., Yost, G., "The Geometry
Tutor," Proceedings Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA.,
Aug 17-23, 1985, pp. 1-7.

3. Burton, R., "Diagnosing bugs in a simple procedural
skill," in Intelligent Tutoring Systems, D. Sleeman and
J.S. Brown, eds., Academic Press, New York, NY, 1982.

4. Burton, R., Brown, J., "An investigation of computer
coaching for informal learning activities" in Intelligent
Tutoring Systems, D. Sleeman and J.S. Brown, eds.,
Academic Press, New York, NY, 1982.

5. Dear, B., "AI and the Authoring Process," IEEE
Expert, Summer 1987, pp. 17-24.

6. Farrell, R., Anderson, J., Reiser. B., "An Interactive
Computer-based Tutor for LISP," Proceedings Third
National Conference on Artificial Intelligence, Austin,
Tx, Aug 6-10, 1984, pp. 106-109.

7. Genesereth, M., "The role of plans in intelligent
teaching systems." in Intelligent Tutoring Systems, D.
Sleeman and J.S. Brown, eds., Academic Press, New
York, NY. 1982.

8. Harmon, P., King, D., Expert Systems, Artificial
Intelligence in Business, John Wiley & Sons, New York,
NY, 1985.

9. Kearsley, G., ed., Artificial Intelligence & Instruction,
Addison-Wesley, Reading, Mass., 1987.

10. Kolodner, J., Simpson, R. Jr., Sycara-Cyranski, K., "A
Process Model of Cased-Based Reasoning in Problem
Solving," Proceedings Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA.,
Aug 17-23,1985, pp. 284-290.

11. Laird, J., Rosenbloom, P., Newell, A., "Towards
Chunking as a General Learning Mechanism,"
Proceedings Third National Conference on Artificial
Intelligence, Austin, Tx, Aug 6-10, 1984, pp. 188-192.

12. Langley, P., Ohlsson, S., "Automated Cognitive
Modeling," Proceedings Third National Conference on
Artificial Intelligence, Austin, Tx, Aug 6-10, 1984, pp.
193- 197.

13. Lichtman, D., Watt, P., "Bottom Line Training -
Getting Results, Not Classes," Manage, Third Quarter
1986, pp. 22-23,35.

14. Littman, D., Pinto, J., Soloway, E., "An Analysis of
Tutorial Reasoning About Programming Bugs,"
Proceedings Fifth National Conference on Artificial
Intelligence, Philadelphia, Pa., August 11-15, 1986, pp.
320-326.

15. Matz, M., "Towards a process model for high school
algebra errors," in Intelligent Tutoring Systems, D.
Sleeman and J.S. Brown, eds., Academic Press, New
York, NY, 1982.

142

16. Miller, M., "A Structured Planning and Debugging
Environment for Elementary Programming," in
Intelligent Tutoring Systems, D. Sleeman and J.S.
Brown, eds., Academic Press, New York, NY, 1982.

17. Miller, J., "Human-computer Interaction and
Intelligent tutoring systems," MCC Technical Report
Number HI-294-86, April 1987.

18. Orlikowski, W., Vasant, D., "Imposing Structure on
Linear Programming Problems: An Empirical Analysis
of Expert and Novice Models," in Proceedings Fifth
National Conference on Artificial Intelligence,
Philadelphia, Pa., August 11-15, 1986, pp. 308-312.

19. Reiser, B., Anderson, J., Farrell, R., "Dynamic Student
Modelling in an Intelligent Tutor for LISP
Programming," Proceedings Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA.,
A u ~ 17-23, 1985, pp. 8-14.

20. Rissland, E., Valcarce, E., Ashley, K., "Explaining and
Arguing with Examples," Proceedings Third National
Conference on Artificial Intelligence, Austin, Tx, Aug
6-10, 1984, pp.288-294.

21. Shneiderman, B., Designing the User Interface:
Strategies for Effective Human-Computer Interaction,
Addison-Wesley, Reading, Mass., 1987.

22. Von der Embse, T., "Course Leadership," Manage,
Volume 39, Number 2, July 1987, pp. 7-8,33.

23. Weinberg, G., The Psychology of Computer
Programming, Van Nostrand Reinhold Company, New
York, NY, 1971.

24. Woolf, B. and Cunningham, P., "Multiple Knowledge
Sources in Intelligent Teaching Systems," IEEE Expert,
Summer 1987, pp. 41-54.

143

